Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
ge2(x, 0) -> true
ge2(0, s1(x)) -> false
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
ge2(x, 0) -> true
ge2(0, s1(x)) -> false
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
ge2(x, 0) -> true
ge2(0, s1(x)) -> false
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
The set Q consists of the following terms:
ge2(x0, 0)
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
minus2(x0, 0)
minus2(s1(x0), s1(x1))
div2(x0, x1)
ify3(false, x0, x1)
ify3(true, x0, x1)
if3(false, x0, x1)
if3(true, x0, x1)
Q DP problem:
The TRS P consists of the following rules:
IF3(true, x, y) -> DIV2(minus2(x, y), y)
IF3(true, x, y) -> MINUS2(x, y)
IFY3(true, x, y) -> GE2(x, y)
IFY3(true, x, y) -> IF3(ge2(x, y), x, y)
DIV2(x, y) -> IFY3(ge2(y, s1(0)), x, y)
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
DIV2(x, y) -> GE2(y, s1(0))
GE2(s1(x), s1(y)) -> GE2(x, y)
The TRS R consists of the following rules:
ge2(x, 0) -> true
ge2(0, s1(x)) -> false
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
The set Q consists of the following terms:
ge2(x0, 0)
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
minus2(x0, 0)
minus2(s1(x0), s1(x1))
div2(x0, x1)
ify3(false, x0, x1)
ify3(true, x0, x1)
if3(false, x0, x1)
if3(true, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
IF3(true, x, y) -> DIV2(minus2(x, y), y)
IF3(true, x, y) -> MINUS2(x, y)
IFY3(true, x, y) -> GE2(x, y)
IFY3(true, x, y) -> IF3(ge2(x, y), x, y)
DIV2(x, y) -> IFY3(ge2(y, s1(0)), x, y)
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
DIV2(x, y) -> GE2(y, s1(0))
GE2(s1(x), s1(y)) -> GE2(x, y)
The TRS R consists of the following rules:
ge2(x, 0) -> true
ge2(0, s1(x)) -> false
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
The set Q consists of the following terms:
ge2(x0, 0)
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
minus2(x0, 0)
minus2(s1(x0), s1(x1))
div2(x0, x1)
ify3(false, x0, x1)
ify3(true, x0, x1)
if3(false, x0, x1)
if3(true, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 3 SCCs with 3 less nodes.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
The TRS R consists of the following rules:
ge2(x, 0) -> true
ge2(0, s1(x)) -> false
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
The set Q consists of the following terms:
ge2(x0, 0)
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
minus2(x0, 0)
minus2(s1(x0), s1(x1))
div2(x0, x1)
ify3(false, x0, x1)
ify3(true, x0, x1)
if3(false, x0, x1)
if3(true, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
Used argument filtering: MINUS2(x1, x2) = x2
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
ge2(x, 0) -> true
ge2(0, s1(x)) -> false
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
The set Q consists of the following terms:
ge2(x0, 0)
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
minus2(x0, 0)
minus2(s1(x0), s1(x1))
div2(x0, x1)
ify3(false, x0, x1)
ify3(true, x0, x1)
if3(false, x0, x1)
if3(true, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
GE2(s1(x), s1(y)) -> GE2(x, y)
The TRS R consists of the following rules:
ge2(x, 0) -> true
ge2(0, s1(x)) -> false
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
The set Q consists of the following terms:
ge2(x0, 0)
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
minus2(x0, 0)
minus2(s1(x0), s1(x1))
div2(x0, x1)
ify3(false, x0, x1)
ify3(true, x0, x1)
if3(false, x0, x1)
if3(true, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
GE2(s1(x), s1(y)) -> GE2(x, y)
Used argument filtering: GE2(x1, x2) = x2
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
ge2(x, 0) -> true
ge2(0, s1(x)) -> false
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
The set Q consists of the following terms:
ge2(x0, 0)
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
minus2(x0, 0)
minus2(s1(x0), s1(x1))
div2(x0, x1)
ify3(false, x0, x1)
ify3(true, x0, x1)
if3(false, x0, x1)
if3(true, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
IF3(true, x, y) -> DIV2(minus2(x, y), y)
IFY3(true, x, y) -> IF3(ge2(x, y), x, y)
DIV2(x, y) -> IFY3(ge2(y, s1(0)), x, y)
The TRS R consists of the following rules:
ge2(x, 0) -> true
ge2(0, s1(x)) -> false
ge2(s1(x), s1(y)) -> ge2(x, y)
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
div2(x, y) -> ify3(ge2(y, s1(0)), x, y)
ify3(false, x, y) -> divByZeroError
ify3(true, x, y) -> if3(ge2(x, y), x, y)
if3(false, x, y) -> 0
if3(true, x, y) -> s1(div2(minus2(x, y), y))
The set Q consists of the following terms:
ge2(x0, 0)
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
minus2(x0, 0)
minus2(s1(x0), s1(x1))
div2(x0, x1)
ify3(false, x0, x1)
ify3(true, x0, x1)
if3(false, x0, x1)
if3(true, x0, x1)
We have to consider all minimal (P,Q,R)-chains.